A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms

نویسنده

  • Dave Witte MORRIS
چکیده

A Lie algebra gQ over Q is said to be R-universal if every homomorphism from gQ to gl(n,R) is conjugate to a homomorphism into gl(n,Q) (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an R-universal Q-form. We also provide a classification of the R-universal Lie algebras that are semisimple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 8 M ay 2 00 2 REAL REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS HAVE Q - FORMS

We prove that each real semisimple Lie algebra g has a Q-form g Q , such that every real representation of g Q can be realized over Q. This was previously proved by M. S. Raghunathan (and rediscovered by P. Eberlein) in the special case where g is compact.

متن کامل

Real Representations of Semisimple Lie Algebras Have Q - Forms

We prove that each real semisimple Lie algebra g has a Q-form g Q , such that every real representation of g Q can be realized over Q. This was previously proved by M. S. Raghunathan (and rediscovered by P. Eberlein) in the special case where g is compact.

متن کامل

Representations of Semisimple Lie Algebras Have Q - Forms Dave Witte

We prove that each real semisimple Lie algebra g has a Q-form g Q , such that every real representation of g Q can be realized over Q. This was previously proved by M. S. Raghunathan (and rediscovered by P. Eberlein) in the special case where g is compact.

متن کامل

Real Representations of Semisimple Lie Algebras Have Q-forms

We prove tha t each real semisimple Lie algebra g has a Q-form go, such that every real representation of go can be realized over Q. This was previously proved by M. S. Raghunathan (and rediscovered by P. Eberlein) in the special case where g is compact.

متن کامل

Fine Group Gradings of the Real Forms

We present an explicit description of the 'fine group gradings' (i.e. group gradings which cannot be further refined) of the real forms of the semisimple Lie algebras sl(4, C), sp(4, C), and o(4, C). All together 12 real Lie algebras are considered, and the total of 44 of their fine group gradings are listed. The inclusions sl(4, C) ⊃ sp(4, C) ⊃ o(4, C) are an important tool in our presentation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015